Klinik und Poliklinik
für Innere Medizin II
Klinik und Poliklinik für Innere Medizin II
Direktor: Univ.-Prof. Dr. med. Roland. M. Schmid
direktion.med2@mri.tum.de

Arbeitsgruppe Univ.-Prof. Dr. Roland Rad

Roland Rad ist der Direktor des Instituts für Molekulare Onkologie und Funktionelle Genomik an der TU München (www.imo.med.tum.de).

 

Unsere Arbeitsgruppe beschäftigt sich mit der Untersuchung molekularer und translationaler Aspekte der Krebsentstehung mit Hilfe von Mausmodellen. Ein Schwerpunkt ist die Entwicklung von PiggyBac transposon-basierten Technologien für insertionale Mutagenese.

Forschungsgebiet

Ausgewählte Publikationen

  1. Müller S et al. KRAS gene dosage and evolutionary trajectories define pancreatic cancer phenotypes. Nature 2018 Feb 1;554(7690):62-68.
  2. Wartewig T et al. PD-1 is a haploinsufficient suppressor of T cell lmyphoma-genesis. Nature. 2017 Dec 7;552(7683):121-125
  3. Yuan D et al. Kupffer-cell derived TNF triggers cholangiocellular tumorigenesis through JNK due to chronic mitochondrial dysfunction and ROS. Cancer Cell, 2017 Jun 12;31(6):771-789
  4. de la Rosa J et al. Single-copy Sleeping Beauty transposon identifies new PTEN-cooperating tumor suppressors in prostate cancer. Nature genetics. 2017 May;49(5):730-741
  5. Chapeau E et al. Resistance mechanisms to TP53-MDM2 inhibition identified by in vivo PiggyBac transposon mutagenesis screen in Arf-/- mouse model. Proc Natl Acad Sci USA, 2017, Mar 21;114(12):3151-3156.
  6. Schneider G et al. Oncogenic signalling of cancer drivers: context matters. Nature Reviews Cancer, 2017 Apr;17(4):239-253.
  7. Friedrich M et al. Genome-wide transposon screening and quantitative insertion site sequencing (QiSeq) for cancer gene discovery in mice. Nature Protocols (2017) 12(2):289-309.
  8. Bassani-Sternberg M et al. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nature Communications 2016 21;7:13404.
  9. Stojanovic N, et al. HDAC1 and HDAC2 integrate the expression of p53 mutants in pancreatic cancer. Oncogene. 2016 Oct 10.
  10. Höckendorf U, et al. RIPK3 restricts myeloid leukemogenesis by promoting cell death and differentiation of leukemia initiating cells. Cancer Cell 2016 Jul 11;30(1):75-91.
  11. McKerrell T et al. Development and validation of a comprehensive genomic diagnostic tool for myeloid malignancies. Blood. 2016 Apr 27.
  12. Maresch M et al. Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice. Nature Communications 2016 Feb 26;7:10770.
  13. Diersch et al. Kras(G12D) induces EGFR-MYC cross signaling in murine primary pancreatic ductal epithelial cell. Oncogene (2016) Jul 21;35(29):3880-6.
  14. Weber et al. CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. PNAS (2015) 112(45):13982-7.
  15. Loregger et al. The E3 ligase RNF43 inhibits Wnt signaling downstream of mutated β-catenin by sequestering TCF4 to the nuclear membrane. Sci Signal (2015) 8(393).
  16. Dietlein F et al. A Synergistic Interaction between Chk1- and MK2 Inhibitors in KRAS-Mutant Cancer. Cell (2015) 162(1):146-59.
  17. Riemer et al. Transgenic expression of oncogenic BRAF induces loss of stem cells in the mouse intestine, which is antagonized by β-catenin activity. Oncogene (2015) 34(24):3164-75.
  18. McKerrell et al. Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Reports (2015) 10(8):1239-45.
  19. Rad* et al. A conditional PiggyBac transposition system for genetic screening in mice identifies oncogenic networks in pancreatic cancer. Nature genetics (2015) 47(1):47-56.
  20. Baumann et al. Disruptions of the PRKCD-Fbxo25-Hax-1 axis attenuate the apoptotic response and drive lymphomagenesis. Nature medicine (2014) 20(12):1401-9.
  21. Schönhuber et al. A next-generation dual-recombination system for sequential time and host specific genetic manipulation of pancreatic cancer. Nature medicine (2014) 20(11):1340-7.
  22. de Jong J et al. Chromatin landscapes of retroviral and transposon integration profiles. Plos Genet (2014) 10(4).
  23. de la Rosa J et al. Antagonistic pleiotropy of nuclear lamina integrity on cancer and aging. Nature Communications (2013) 4:2268.
  24. Rad* et al. A genetic progression model of BrafV600E-induced intestinal tumorigenesis reveals targets for therapeutic intervention. Cancer Cell (2013) 24(1):15-29.
  25. Eser et al. Cell autonomous PI3K signalling via Pdk1 is essential for Kras driven pancreatic cancer formation. Cancer Cell (2013) 23(3):406-20.
  26. Klein et al. Interstitial cells of Cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity. Nature Communications (2013) 4:1630.
  27. Lawley et al. Targeted restoration of the intestinal microbiota resolves hypervirulent C. difficile disease and contagiousness. Plos Pathog (2012) 8(10).
  28. Stephens et al. The landscape of cancer genes and mutational processes in breast cancer. Nature (2012) 486(7403):400-4.
  29. Wang et al. Rapid and Efficient Reprogramming of Somatic Cells to iPSCs by Rarg and Lrh-1. PNAS (2011) 108(45):18283-8.
  30. Vassiliou et al. Mutant nucleophosmin and cooperating pathways drive leukaemia initiation and progression in mice. Nature Genetics (2011) 43(5):470-5.
  31. Rad et al. PiggyBac Transposon mutagenesis: A Tool for Cancer Gene Discovery in Mice. Science (2010) 330(6007):1104-7.
  32. Mazur et al. Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic adenocarcinoma. PNAS (2010) 30:13438-43.
  33. Yusa et al. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nature Methods (2009) 6(5):363-9.
  34. Rad et al. Extra- and intracellular pathogen recognition receptors cooperate in the recognition of Helicobacter pylori. Gastroenterology (2009) 136(7):2247-57.

*corresponding author

Wissenschaftliche Arbeiten

Bei Interesse an einer experimentellen biologischen oder medizinischen Doktor- oder Diplomarbeit oder an einer Postdoc-Position bitte Kontaktaufnahme via E-Mail.


Kontakt und Ansprechpartner

Leitung: Univ.-Prof. Dr. med. Roland Rad
Institut für Molekulare Onkologie und Funktionelle Genomik
Klinikum rechts der Isar der TUM
Ismaninger Str. 22, 81675 München
Tel.: (0 89) 41 40 - 43 74
Fax: (0 89) 41 40 - 79 76

E-Mail: roland.rad@tum.de